Protein-templated gold nanoclusters: size dependent inversion of fluorescence emission in the presence of molecular oxygen.
نویسندگان
چکیده
Gold nanoclusters are promising candidates as biological markers without having toxic effects like fluorescent quantum dots. Herein, bovine serum albumin (BSA) protein stabilized gold nanoclusters of two different sizes emitting at 410 and 645 nm have been synthesized. These nanoclusters have been shown to interact with molecular oxygen differentially. Spectroscopic and chemical evidences show that dioxygen molecule gets adsorbed at two different orientations on the nanoclusters. The orientation motifs have been hypothesized to be superoxo and peroxo types on the smaller and the larger gold nanoclusters, respectively. Due to the difference in attachments, the oxygen molecule shows opposite changes in fluorescence intensity for the nanoclusters. The fluorescence intensity of the blue emitting nanocluster shows a profuse enhancement whereas the red emitting species shows quenching of emission. Superoxo type adsorption of the oxygen molecule on the blue emitting gold nanoclusters induce formation of singlet oxygen that in turn enhances the fluorescence intensity of the species. This could be verified by oxidation of diaminobenzidine (DAB) by singlet oxygen. Enhancement in fluorescence intensity of the blue emitting gold nanoclusters with an increase in concentration of molecular oxygen may enable them to be good candidates in bioimaging and detection.
منابع مشابه
Ag K-edge EXAFS analysis of DNA-templated fluorescent silver nanoclusters: insight into the structural origins of emission tuning by DNA sequence variations.
DNA-templated silver nanoclusters are promising biological fluorescence probes due to their useful fluorescence properties, including tunability of emission wavelength through DNA template sequence variations. Ag K-edge EXAFS analysis of DNA-templated silver nanoclusters has been used to obtain insight into silver nanocluster bonding, size, and structural correlations to fluorescence. The resul...
متن کاملGreen synthesis of peptide-templated gold nanoclusters as novel fluorescence probes for detecting protein kinase activity.
A green method was employed for synthesizing peptide-templated nanoclusters without requiring strong reducing agents. Using synthetic peptide-gold nanoclusters as fluorescence probes, a novel assay for detecting protein kinase is developed based on phosphorylation against carboxypeptidase Y digestion.
متن کاملFluorescent detection of hydrogen peroxide and glucose with polyethyleneimine-templated Cu nanoclusters.
An interesting, simple, and label-free strategy for the detection of hydrogen peroxide and glucose has been developed with polyethyleneimine (PEI)-capped copper nanoclusters as a fluorescence probe in aqueous solution. The PEI-templated Cu nanoclusters which we have synthesized have an average diameter of 1.8 nm and show a blue emission at 480 nm. In the presence of hydrogen peroxide, the fluor...
متن کاملMCR of the quenching of the EEM of fluorescence of Aflatoxins (B1, G1) by Gold nanoparticles
In This research, gold nanoparticles were synthesized and functionalized by the antibody of aflatoxins. The quenching of the fluorescence of excitation emission matrices (EEM) of two type of aflatoxins (B1, G1), provoked by the gold nanoparticles, was studied by principal component analysis (PCA) and multivariate curve resolution with alternating least squares (MCR-ALS). These aflatoxins show q...
متن کاملMCR of the quenching of the EEM of fluorescence of Aflatoxins (B1, G1) by Gold nanoparticles
In This research, gold nanoparticles were synthesized and functionalized by the antibody of aflatoxins. The quenching of the fluorescence of excitation emission matrices (EEM) of two type of aflatoxins (B1, G1), provoked by the gold nanoparticles, was studied by principal component analysis (PCA) and multivariate curve resolution with alternating least squares (MCR-ALS). These aflatoxins show q...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 4 19 شماره
صفحات -
تاریخ انتشار 2012